DIY PERSONAL SATELLITES

from : http://spectregroup.wordpress.com/2010/08/05/diy-personal-satellites/

$8K Personal Satellite Kit
http://news.discovery.com/space/personal-satellite-kit.html
“Bringing the do-it-yourself market to a whole new level, a California firm is selling kits to build a personal satellite — and get it into space — for $8,000. The program, called TubeSat, is the brainchild of Randa and Roderick Milliron, a Mojave, Calif.-based couple who’ve been developing a bare-bones, low-cost rocket system for the past 14 years. Selling flights as a package deal with satellite-building kits is proving to be a winning combination, with more than a dozen customers signed up to fly on the debut launch early next year. The first of four suborbital test flights is scheduled for August and there are customers for those as well. The kit contains the shell components for a satellite including a printed circuit board, solar cells, batteries, a combination transmitter-receiver, microcomputer, electronic components, blueprints and a structural shell that’s about the size of a one-liter bottle. Most TubeSat customers, so far, are universities. “There’s been a massive number of shelved experiments,” Milliron said, caused by a dearth of low-cost launch systems. “This is an opportunity for the academic community to fly affordably.” Interorbital’s rocket, called the Neptune, will place up to 32 TubeSats and 10 slightly larger off-the-shelf spacecraft called CubeSats into orbit about 192 miles above Earth. At that altitude, the spacecraft will orbit for about six weeks, then burn up in the atmosphere. Launches will take place from the island of ‘Eua, located in the Kingdom of Tonga, in the South Pacific.”

Includes Free Launch (32 at a Time)
http://interorbital.com/Company%20Page_1.htm
http://interorbital.com/TubeSat_1.htm
“A TubeSat is designed to function as a Basic Satellite Bus or as a simple stand-alone satellite. Each TubeSat kit includes the satellite’s structural components, safety hardware, solar panels, batteries, power management hardware and software, transceiver, antennas, microcomputer, and the required programming tools. With these components alone, the builder can construct a satellite that puts out enough power to be picked up on the ground by a hand-held HAM radio receiver. The TubeSat also allows the builder to add his or her own experiment or function to the basic TubeSat kit. As long as the experiment or function satisfies the volume and mass restrictions, it can be integrated into the TubeSat. These restrictions provide a unique intellectual challenge for the experiment or function designer. TubeSats are also available as Double TubeSats, Triple TubeSats, or Quadruple TubeSats. Prior to launch, each TubeSat is inserted into one of the rocket’s 32 Satellite Ejection Cylinders. They never come into contact with the other TubeSats. Once on-orbit, the satellites are released according to a pre-programmed timing sequence. The timing sequence is designed to prevent satellite clustering. Interorbital expects to launch a set of 32 TubeSats per month. If the buyer pays the full cost of the TubeSat kit upfront, he or she is immediately placed on a launch manifest according to the order in which the payment was received. TubeSat buyers also have the option of paying half of the cost upfront, then paying the other half of the cost at a later date or when the TubeSat is completed and ready for integration into the launch vehicle. With this option, the builder will be placed on a launch manifest according to the time when full payment is received.”

See Also: CubeSats
http://cubesatkit.com/content/overview.html
http://cubesat.calpoly.edu/index.php/collaborate/suppliers
http://space.com/businesstechnology/cube_sats_040908.html
“A standard CubeSat is a motherboard of invention: About a 4-inch (10-centimeter) block of equipment that tips the scale at roughly 2 pounds (1 kilogram). A handful are already in space and with other launches planned for later this year. Peep inside a CubeSat and you’ll spot off-the-shelf circuitry in the familiar form of microprocessors and modem ports, and other microchip devices typically used in cell phones, digital cameras and hand-held Global Positioning System (GPS) satellite navigation units. A CubeSat can be built for under $25,000, although they typically come in at the $30,000 to $40,000 price range – still a bargain. The “going-rate” per CubeSat launch is in the $40,000 range. Universities have an inherent advantage in developing “disruptive” space systems, Swartwout contends, and that is the freedom to fail. In fact, he added, three of the six CubeSats placed in orbit in 2003 were either never contacted or failed very early. “Experimental failure is a basic element of university life, and from the university’s perspective, a failed spacecraft is not necessarily a failed mission,” Swartwout said. Swartwout explained that the tremendous reductions in the size and cost of electronics are making possible “disposable” probes that function for only weeks, but whose very low cost and short development cycle make their launch and operation affordable. There is talk about flying tethers on the spacecraft, as well as toting along inflatable packages – both techniques viewed as a way to hasten a CubeSat’s reentry and lessen worry about adding to already orbiting space clutter. CubeSat innovators also envision the small spacecraft deployed from the International Space Station – chucked out of an airlock. Then there is the prospect of CubeSats toting biological or hardware experiments that reenter and parachute to Earth. “I hope the CubeSat is like the personal computer…you don’t know what the heck you’re going to do with this little box when you build it or what markets will be enabled. But it’s so cool, you’ve got to do it,” Twiggs concluded.”

Open Source Arduino Sats
http://opensat.cc/download/DIYSatellite_en.pdf
http://books.google.com/books?id=YAIHa97G4icC

Cellphone + Toy Parts
http://wired.com/wiredscience/2010/07/cell-phone-satellite/
“Instead of investing in their own computer research and development, engineers at the NASA Ames Research Center are looking to cellphones and off-the-shelf toys to power the future of low-cost satellite technology. The smartphone in your pocket has about 120 times more computing power than the average satellite, which has the equivalent of a 1984-era computer inside. “You can go to Walmart and buy toys that work better than satellites did 20 years ago,” said NASA physicist Chris Boshuizen. The biggest challenge of sending cellphones and toys into space is whether the parts can get up there without shaking apart and work in a vacuum at extreme high and low temperatures. To do some preliminary testing, two Nexus One cellphones caught rides on two rockets on July 24 that launched 30,000 feet into the atmosphere at a maximum speed of mach 2.4 (about 1,800 miles per hour). One of the rockets crashed into the ground after its parachute failed, but the other made it back with the cellphone unscathed. Both cellphones were able to record the acceleration of the rocket using their built-in accelerometers, and the undamaged phone captured 2.5 hours of video of the event through a hole in the side of the rocket. “Everything that didn’t break is a piece of data,” said volunteer engineer Ben Howard. “We know that the batteries didn’t break and that the computer worked the whole time.” If the cellphones ultimately get used to power satellites, they will probably be sent up without a screen and with a different battery to make them lighter. Next, the team will build a stabilizing mechanism for the satellite using the cellphone, $100 toy gyroscopes and parts similar to those of the Mindstorms Lego, so the satellite can orient itself in space. By installing three spinning gyroscopes and getting them to spin at different velocities, a satellite can move in any direction. The same technique is currently used on many satellites, but requires multimillion dollar technology. The whole goal of the project is to make satellites cheap and affordable, so that anyone with bit of time and a couple of thousand dollars can send their own satellite into space. Upgrading the computing power of satellites using cellphones would mean increased satellite capabilities, possibly including artificial intelligence. “We’re not sure yet exactly what people will want to do with their satellites, and that’s the point,” said NASA education specialist Matt Reyes. “What can you imagine doing with your phone in space?””


Retrieving the Nexus One cell phone from the rocket post-launch

Previously on Spectre : Sat Hacks
http://spectregroup.wordpress.com/2009/10/02/sat-hacks/
Consumer Satellite Use
http://spectregroup.wordpress.com/2008/07/16/consumer-satellite-use/
Russians Launching Satellites From Subs
http://spectregroup.wordpress.com/2007/07/10/russians-launching-satellites-from-subs/
Brazilian Satellite Squatters
http://spectregroup.wordpress.com/2009/04/24/brazilian-satellite-squatters/
Earth Will Have Rings
http://spectregroup.wordpress.com/2008/03/24/earth-will-have-rings/

One thought on “DIY PERSONAL SATELLITES

  1. If you are directly involved in building picosatellites, tell us about your CubeSat project. Make a short description of it at this address:
    http://cubesat.ifastnet.com/forum

    Keep us updated with the latest news.

    We are not affiliated with any university, organization or nation.
    Also, it is not important who you are, a professional with large experience in building picosatellites or just a beginning.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s